A Better Mythology
for Computing

Jed Harris, Austin Henderson
Pliant Research

This is an extended version of a talk given at SigCHI, May 18, 1999,

Computing Is becoming
constitutive of social groupings

Examples
e Financial systems

» Telecommunications
 Utilities (e.g. power grids)
» Airlines
 Distribution

S0, limitations in computing are
becoming limits for society

When our computer systems start to limit social evolution, we had better
think hard about evolving our computers.

Social groupings need.:

To be responsive to local needs
» Deal effectively with unanticipated demands
To be coherent across larger regions

» Coordinate disparate activities so they reinforce
each other

To scale

 Extend to support great...
— breadth: many “compatible’ instances
— depth: many diverse, integral elements

Responsive:
improv theater,
effective political campaigns
Coherent:
symphony orchestras,
telephone systems
Large scale:
MacDonalds,
World Wide Web,

international finance

Responsiveness vs. coherence

@
O
o
@

L
@)
O

Responsiveness

In a given system, as responsiveness increases, coherence tends to decrease,
and vice versa—a classic tradeoff.

Scaling makes this tradeoff sharper. As systems get larger, they have to
work harder to maintain their coherence, and this increasingly makes them
unresponsive. Conversely, large systems that allow great local
responsiveness (such as the World Wide Web) have difficulty maintaining
coherence.

This tradeoff, like most others, can be improved though the use of
appropriate technology. Such technology offers the possibility of both
increased coherence and increased responsiveness, even as systems grow
large.

Pliant research is focused on developing technology to improve this tradeoff.

Example:
Responsiveness vs. Coherence*

Situation: Clerk isfilling in “ship-to address’
Coherence: System validates address, selects
optimal warehouse, automatically prints bar

coded label for UPS at ship time
Unanticipated demand: Copier ison abarge
Responsive improvisation:

o enter “Call Bob: 211-555-1234"

* but extreme coherence makes thisimpossible!

* Fikes and Henderson, after Eleanor Wynne

When this example was originally described, the clerk could improvise an

entry on a paper form, or perhaps call the guy on the shipping dock, and get
the supplies to the barge.

However, as computers become constitutive, the data entry validation,
automatic order routing to the optimal warehouse, and integration with
computerized shipping procedures makes such improvisation impossible.

Problem: Now,
computers maximize coherence

This greatly impairs responsiveness
RESTIIS
o systemic rigidity and fragility
 user burdens

 unhealthy pressures on social processes

When most computing systems encounter internal inconsistency, they
simply crash. Designers try to avoid this by giving their systems a single,
consistent perspective on the world.

Users end up bearing the burden of making the world look the way the
systems demand, to insulate them from the messy reality that they can’t
handle.

Increasingly, social systems are being forced to operate in ways that are
conveniently supported by computers, rather than the other way around.

Luckily some important types of systems, such as internet routers, can
handle some messiness in their interaction with the world. This is part of the
reason that the internet, and especially the web, have grown so rapidly.

Roadmap

Tension between computing and society
» Roots of the tension: current design mythology
A better mythology

Two research agendas:

« Extending current computing
» Developing a new type of computing

What can we do?
explore the roots of the problem
adopt new design and research approaches

improve the tradeoff

Current design mythology:
“Total consistency”

The stories we tell about our practice

Standard ideology in “core’ computer science

 Protocols, languages, applications, data bases,
operating systems, good old fashioned Al

Maximizes coherence, Ignores responsiveness

Thisisachoice; we can choose differently
 how did we make this choice?

Computer theorists tend to get upset when we suggest that we have to step
back from total consistency. Without total consistency, existing models for
computer semantics fail.

In fact no real system is totally consistent. However, this focus on the ideal
of total consistency has left us with no theoretical tools for understanding
real systems.

Instead, our theories have defined real systems as approximations to ideal,
totally consistent systems. This has produced absurd results in areas such as
linguistics, cognitive science, artificial intelligence, and user interface design.

It’s time to recognize that this is a dead end and look for a better approach.

Organizations
Coordl nators

\1

ll!" ‘
Workers ?!M v

All real organizations work because of feedback loops between the
coordinators, the workers, and the activity they carry out in the world.

(Of course, in real organizations the coordinators and the workers overlap
and are often the same people. In separating them we have already made a
concession that we will ultimately have to take back.)

As organizations scale
Coor;dinators

v

Design

Cohtrol

Workers

As soon as human groups get large, explicit control systems and rules
emerge. Explicit rules probably arise as soon as human organizations get
large; codes of law show up eve in very early cities (e.g, the Code of
Hammurabi,, ca. 1750 BC).

Even mathematics has its roots in the need for coordination in large groups;
it initially arose from recipes for coordinating large construction projects

such as the pyramids, adjudicating disputes about land ownership, and
tracking large inventories of goods.

10

Bureaucratic mythology
Coordinators

«? Fﬁ
Design

Cohtrol

Workers

The feedback loops that make organizations work are implicit, spontaneous,
and far too complex to analyze in detail without modern tools such as video
cameras and game theory.

The rules of an organization, on the other hand, require explicit formulation
and enforcement.

As a result it is easy to ignore the feedback loops, and come to believe that
the rules, and the hierarchy that enforces them, are the structure of the
organization.

11

Enterprise computing,
as designed

Coordinators

v

Computer systems were designed to automate rule-following behavior: the
work of human “computers” calculating ballistics tables, maintaining
financial accounts, and so on.

They were developed at the intersection of several intensely rule-oriented
cultures: military bureaucracies, mathematicians, and large, engineering-
Intensive corporations, such as telephone companies and office equipment
manufacturers.

Naturally, the core ideology of computer system design is totally permeated
with the assumption that computers are rule-following machines, and more
generally, that all human activities can and should be described in terms of a
consistent set of rules.

12

Enterprise computing,

Coordinators

v

Unfortunately the idea that all human activities can be described in terms of
a consistent set of rules fails to take into account the feedback loops that
actually make organizations work, and the constant negotiation that these
loops entail.

As a result, computing systems tend to break those loops. The more
effectively the computer systems control the activity, the more completely
they break the loops.

The resulting problems are invisible within the consistent perspective of the
computer system and so people have to bear the brunt of patching them up,
and usually have to fight the computer system to do it.

13

And scaling makes it worse:
worlds In collision

Even if a system can be made more or less workable, big problems emerge as
soon as it has to be integrated with other systems.

When banks merge, for example, millions of dollars (sometimes hundreds of
millions) can be lost, and careers destroyed, because of the difficulty of
integrating the systems.

14

Pliant vision

Computing that enhances and benefits from
human creativity and diversity

Instead of trying to suppress them

Most existing computing technology seems to be directed at either carrying
out menial tasks efficiently, or keeping people in line.

It’s time to develop computing that can work with people at a higher level.

15

Roadmap

Tension between computing and society
Roots of the tension: current design mythology
»> A better mythology

Two research agendas:

« Extending current computing
» Developing a new type of computing

Now let’s see how we can realize this vision...

16

Non-Solutions

Classical Al

« would a sufficiently large, complex, perfect
bureaucracy be responsive?

Adaptive systems
 neural networks, hidden markov models, etc.
e can add “rubber bumpers’ to rigid systems

* how will these technologies handle alarge
mission critical application?

The approach promoted by Artificial Intelligence from the 1940s through the
1980s (and still supported by many researchers today) is a striking example
of how very intelligent people can adopt fruitless beliefs because of the core
ideology of computer science. Why else would one think that relatively
simple rule-based systems with no ability to learn should be able to emulate
human beings...

Adaptive systems, while they are useful today (for example in speech and
handwriting recognition) don’t currently scale. The big stumbling block is
composition. Rule-based architectures provide very strong mechanisms for
composing larger systems out of smaller ones. So far, we haven’t found such
mechanisms for adaptive systems. Without composition mechanisms, for
example, we can’t explain anything to an adaptive system...

17

A better mythology:
“Dynamic engagement

Balance responsiveness and coherence
 honor and support “self-control”

Scale without total consistency
o find other ways to sustain coherence

Work with richer ontologies

e outside the focus of logic and
“classical” computer science

Engagement mixes cooperation and contention. In a dynamic engagement
the rules are always being negotiated.

The focus of pliant research is to improve the tradeoff between
responsiveness and coherence, especially as we build large systems.

In addition, we need to recognize how rich our ordinary experience of the
world is, compared with the types of semantics currently used in computer

science.

18

Richer ontologies

Multiple concurrent perspectives
 no privileged/definitive viewpoint
Often inconsistent, vague and equivocal
Often mutually incommensurable
 potentially incommensurable “all the way up”
* but if they interact, not “all the way down”
Drifting with respect to each other

These are ordinary facts of life in human interaction, but they are denied or
explained away in essentially all current mathematical theories of semantics.
As a result, we have no way to deal with them in our computer systems.

To begin with, it is essential to recognize that these are facts of life, and that
computer system designers have to deal with them somehow.

In the longer run we must develop techniques that let us fully support and
honor rich ontologies.

19

Roadmap

Tension between computing and society

Roots of the tension: current design mythology
A better mythology
TWO research agendas:
« Extending current computing
» Developing a new type of computing

The pliant argument may not convince many people with a strong
investment in the status quo.

Instead, we need to focus on building systems that just work better than ones
limited to total consistency.

These research agendas are focused on building systems that work better.

20

Becoming Pliant

Design focus: Pliant use of rigid systems

System focus: Create pliant computing

There is actually a spectrum of approaches to implementing pliant systems,
from very near term to very long term.

In this presentation, we have chosen to describe approaches at the ends of
the spectrum, but we are also actively exploring intermediate options.

21

Design focus:
Pliant use of rigid systems

We can start without exotic technology
 findlotsof “low hanging fruit”
Five types of examples...

We believe it is possible to take existing systems and extend them to support
pliant usage. This only takes us so far, but it is a good start.

We have found that it is easy to generate good examples. When we look at
an existing computing system, and the practices of people who use it, we can

usually find ways to make it more pliant and better at supporting those
practices.

22

1. Capturing unexpected data:

Margins on forms*
Formal: Manage jobs via computer system

Informal: Actual job emergesin the doing
 annotations in margins of paper job sheet

But: No “margins’ in computer database
o store paper in parallel with computer records
* reverse engineer right “story” for computer
So: Provide “margins’ on computer forms
o Users: avoid parallel filing, easier retrieval
» Designers. better view of user practices

*Bowers, Button and Sharrock

This example is based on studies of print shops that were “improved” by
adding a computerized scheduling and billing system.

The computer system couldn’t reflect the real variation and complexity of
the workers actual practices, such as splitting jobs across machines, using
special paper, suspending one job to do a more urgent one, and so forth.

As a result, the workers had to use the old system to keep the print shop
running. Then they had to figure out how to lie to the computerized system
to generate the right records.

At a minimum, “margins” would have made the workers’ jobs easier,
because it would have helped them maintain their internal feedback loops.

If the computer system designers used the information that ended up in the
margins, they could have extended the system to better support the print
shop practices, and produced better records for management at the same
time.

23

2. Using unexpected data:

Invalid field values*
Formal: Ship-to address field (validated)

Informal: Copier ison abarge
 address only known at shipping time

o enter “Call Bob: 211-555-1234"
But: System accepts only “valid” addresses
* shipping process may be automated
So: Allow “flagged” values, ask users for help

e Users easier communication, grow conventions

 Designers: better view of user practices
- ACEET e S, BN BT TS

Here is the “copier on a barge” example that we saw earlier.

Even if the system is fully automated, we can still let people enter “invalid”
data (perhaps after the system warns them that it can’t understand).

Then we need to have the system *“call for help” from humans when it
encounters data it can’t process. So in this case when the order is ready, the
system would call for help from a human in the warehouse.

Once we’ve added this path, the computer system actually helps the people

In the organization communicate effectively, rather than getting in their way.

Such adaptations aren’t trivial, but they aren’t technically challenging. The
main reason they aren’t common is the “rule bound” mentality in system
design.

24

3A. Ecological software growth:
Buttons*®

“ Scriptable’ buttons embedded in documents

* easy to use—invoke by clicking
» easy to exchange—mailable

e easy to view and mutate—small and simple
Observed use

e users needed “permission” to “play”
(“Whatever is not required is forbidden.”)

 users and designers crystallized regularities
*an InterLisp technology at Xerox RC Europe - Cambridge

The users chose and propagated buttons they found useful, so crystallization
happened through reproductive success in the user environment. Users
rarely changed the buttons themselves.

At the same time the designer noticed how buttons were used most
frequently, and what users requested most often. He extracted what he
could see as regular, and built it into the Buttons framework. As a result the
buttons got a lot easier to adapt through external controls.

Eventually the button framework was general enough to satisfy most users’
requirements, and change slowed (but did not stop).

25

3B. Ecological software growth:

Web content

Source is always inspectable

 easlly understood map from source to image
 easy to copy and mutate

 easy and safe to experiment
Observed use

 Web page innovations propagate quickly

* |ocal design continually stretches standards

o standards-makers can survey design population
o standards chase designs but never catch up

The web development and web standards communities recognize the
Importance of the “View Source” command in all web browsers, which
allows users to see how effects are created.

Discussions on changes to browsers and standards often turn on what web
page designers are doing with existing techniques. Participants often survey
existing practices in one way or another.

However, as far as we know, this ecology of content hasn’t been studied
explicitly as an ecology. It seems like a pretty clear example of “memes”, in
this case identifiable because they are recorded in HTML XML, and scripting
languages.

26

4. User feedback on design:
Collaborative documentation*

Formal: Documentation comes with system
 generic and typically lags user practices
Informal: Users help each other in context

But: Finding good practicesis hard and slow

So: Help users share practices through
networked help system

o Users moretimely, relevant help
» Designers better view of user practices

*Julian Orr; Danny Bobrow; Tom Malone; Henry Lieberman

In many cases, people actually solve their problems by asking questions on
Usenet newsgroups. These questions and answers are often then crystallized
into a “Frequently Asked Questions” list (FAQ). In effect, people are
cobbling together a collaborative documentation mechanism.

There are various experimental systems that approximate networked help.
However, as far as we know nothing is under commercial development that
allows users of a program to post inquiries when their help system doesn’t
answer their questions, and which then melds the answers back into the
basic help system.

The most relevant commercial systems are “knowledge bases” for telephone
help desks. These could probably be used as the basis for networked help
systems reasonably easily.

27

5. Social coherence control:

Large development projects*
Formal: Specs, schedules, ownership, etc.
Informal: Social interaction isreal control
But: Need system support for social process

o to support asynchronous distributed work
* to provide outside visibility and auditing
So: Bug databases, weak serializability, etc.
o Users:. social processes become more scaleable
» Designers for now, usersare designers...

*Becky Grinter

This sort of mixed computer and social control mechanism for software
projects has been around for over a decade, but it has gotten a lot more
visible and important with the emergence of huge networked Open Source
projects (such as Linux and Apache) in which the participants rarely, if ever,
meet face to face, and in which the management of the project is done almost
entirely through the software systems.

Significantly, in these Open Source projects, there is no strong management
hierarchy or organizational boundaries. The project is volunteer run and
self-organized. Never the less, these projects have created products that
dominate their markets.

As with the evolution of web idioms, the nature of the medium would make
longitudinal studies of the process relatively easy, since most of the
interaction is captured automatically.

Becky Grinter, “Recomposition: Putting it All Back Together Again” Proc
CSCW 98, Seattle WA, ACM, New York. Pp 393-402
28

Coordinators
Design

Control
Computer System

Workers &)

With only a moderate effort, we can restore and even enhance the broken
feedback loops that support organizational health, while still using
computers to provide improved organizational scalability.

This effort would also give us valuable insight into the practices that actually
maintain the fabric of organizational coordination, but which are largely
invisible today.

As we improve our designs, we will be developing the social and technical
understanding and acceptance that will be needed for a more deeply pliant
technology.

29

This is good, but not enough!

Design focus gives user s more pliant ontologies

But computers
 internally still depend on total consistency
» sothey arestill limited torigid ontologies

So users are still doing all the ontology work

No matter how well we rework rigid systems to ameliorate these problems,
they are still present.

As our systems scale and become more essential to our organizations, the
tradeoff between coherence and responsiveness will get more painful, and
the burdens on people in these organizations will continue to increase.

We must attack this tradeoff at a deeper level.

30

Roadmap

Tension between computing and society
Roots of the tension: current design mythology
A better mythology

Two research agendas:

« Extending current computing
» ¢ Developing a new type of computing

We have looked at the sort term option. Now let’s explore the other end of
the spectrum: the longest term options we can understand well enough to
research.

31

System focus:
Create pliant computing

Four potential aspects
Alexandrine patterns
Enacting patterns

Collaborating activities
Evolving system
Using
o continuous values, field-like interaction
 probabilistic (rather than logical) inference
o thick scenes rather than thin descriptions

This description of this option is somewhat impressionistic because much of
the content must be determined by the research itself. However we believe
that the description captures essential elements that will be needed in some
form.

We have explored the underlying technology (mentioned under “Using”
above) but did not have space to discuss it in this presentation.

Continuous values and probabilistic inference are closely related, and give
us the basic semantics needed for rich ontologies.

The contrast between thick and thin is exactly the ethnological distinction
first described by Clifford Geertz, which turns out to apply very well to the
design of complex software. Current programming ideals (modularity, clean
architecture, etc.) lead to very thin descriptions. Pliant systems would be
much more internally redundant, partially contradictory, multiply
interpretable, and thus thicker.

32

1. Alexandrine patterns

Build the whole system out of patterns, as
described by Christopher Alexander:

o “aswirling intuition about form...
afluid field of relationships’

Pattern characteristics:

* inherently metaphorical:

used by “seeing as’ or “reading as/on”
 express a problem and its solution—i.e. values
* interact through forces not predicates

Christopher Alexander invented patterns for human communication (about
building). They are composable and form a language. However they are not
symbolic or syntactic in the sense that language is; they have topological and
analogical relationships to the structures they describe, and they can overlap
and intertwine in complex ways.

Patterns also have an inherent “grain” that is much stronger than typical
programming language constructs (but perhaps comparable to natural
language words or phrases). A pattern helps users judge whether a given
Instance is “better” or “worse” according to the pattern’s inherent values.

In the design process, patterns “push” and “pull’” their underlying material
toward better fit. Since patterns overlap, multiple patterns may be pushing
or pulling on the same underlying features. This process might lead to a
design that beautifully satisfies all the values, or it might get stuck in an
unsatisfying local optimum. Such a local optimum typically takes a creative
leap to escape.

33

2. Enacting patterns

Grasp a situation in terms of patterns,
and thereby change it

Enaction characteristics
observable, redirectable= manageable
can aways “call for help” (mixed initiative)
can have conflicts and creative resolutions
can use history as a resource
typically not deterministic

We see patterns as being enacted: applied and elaborated incrementally. We
see this enaction as open to inspection and intervention by users and
designers—more like building a house over time than transitioning
instantaneously between states in a finite automaton.

Enaction of patterns may have conflicts, get stuck, need help, and it creates
history as it goes. This history then becomes a resource: when we got into
similar situations in the past, what did we try, what worked, and what
didn’t work?

However, like life and evolution, the enaction of patterns isn’t entirely
predictable or repeatable. If we rewind the tape and run it again, we won’t
get exactly the same result. How close we come to the same result is mainly
a function of how good our solution was compared with the alternatives,
and how rough the landscape of alternatives is.

3. Collaborating activities

Organize massively parallel diversity to
maintain the right amount of coherence
e monitor and manage coherence as a system
resource like storage, bandwidth, or CPU time
Activity characteristics
* interact through enaction
» will often have incommensurable “languages’

 can aways find common ground by going
“down” (finer grain, more specific cases)

The description of enaction gives us a rough idea of how we would carry out
specific “computational” processes. Now we need to consider how such
processes would interact.

Processes may mesh well, and enhance each other’s effectiveness. In that
case, they will tend to produce mutual coherence and we don’t need to
Worry.

On the other hand, processes may find themselves in a “tug of war’ over the
underlying ontology, trying to define shared elements in different ways, and
reducing coherence. To advance its values, each process will need to search
for alternative perspectives that can reduce the conflict. Through mutual
search the processes may find compatible perspectives that increase
coherence.

We need to develop ways to monitor and manage this sort of interaction,

and more generally to treat coherence as a system resource, like memory,

CPU time, or network bandwidth. Similar problems have been addressed,

for example, in controlling thrashing in processor scheduling. 35

4. Evolving system

Manage |large-scal e change and growth by
selecting and integrating local change
System characteristics
» kegpon all thetime
 reviselocaly, incrementally “on line”

* filter, consolidate and propagate local changes
to maintain large-scale coherence

o |let different parts drift in different ways

At the highest level, we need to recognize the nature of large-scale systems
from now on: such systems cannot be built and rebuilt, they can only be
evolved.

Today’s large systems, for example those which support enterprise-wide
services or networked e-commerce, cannot be developed or modified “off
line””; they are always on, and must be developed and modified
incrementally on a “service maintained” basis.

This inherently requires the ability to change different parts of the system
somewhat independently, to introduce and then resolve inconsistencies
without ever rendering the system unusable.

In other words, such systems require pliant technologies.

36

Fully pliant systems
Coocdi nators

v

Computer
System

Rocket scienceés
ReSearch needed!

e N\

In this final view, we summarize the long-term potential of pliant
computing. The original feedback loops that make organizations work are
restored. In addition, the rules and the computer box are gone. Instead of
these rigid structures, computer systems have evolved into a pervasive,
dynamic backdrop for organizational activity that allows explicit
management of organizational coherence.

We believe that computer systems can change from an iron cage limiting
flexibility and creativity to a framework that enhances both organizational

strength and agility.

37

Pliant Research

www.pliant.org

Jed Harris Austin Henderson
jed@pliant.org henderson@pliant.org
510-524-4350 650-747-9201

Slides online at http://www.pliant.org/talk-7-99.pdf

Please get in touch with us if you have questions or want to discuss these
ideas further.

38

